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ABSTRACT
Line intensity maps (LIMs) are in principle sensitive to a large amount of information about
faint, distant galaxies which are invisible to conventional surveys. However, actually extract-
ing that information from a confused, foreground-contaminated map can be challenging. In
this work we present the first application of convolutional neural network (CNN) to directly
determine the underlying luminosity function of a LIM, including a treatment of extragalac-
tic foregrounds and instrumental noise. We apply the CNN to simulations of mock Carbon
Monoxide (CO) line intensity maps similar to those which will be produced by the currently-
active COMAP experiment. We evaluate the trained CNN on a number of noise scenarios in
order to determine how robust the network predictions are for application to realistic data. We
find that, in the ideal case where the mock data capture all of the features of the real data, the
CNN performs comparably to or better than conventional analyses. However, the network’s
accuracy degrades considerably when tested on signals and systematics outside of those it
was trained on. For both intensity mapping and cosmology as a whole, this motivates a broad-
based study of whether simulated data can ever be generated with sufficient detail to realize
the enormous potential of machine learning methods.

Key words: cosmology: large-scale structure of Universe – galaxies: high-redshift – machine
learning: neural networks

1 INTRODUCTION

A significant experimental effort is underway to study the high-
redshift universe with line intensity mapping (LIM). LIM exper-
iments seek to probe galaxy evolution and large-scale structure
without resolving individual emitting sources. Instead, these sur-
veys seek to map the aggregate emission of a single spectral line
over cosmological scales (see Kovetz et al. 2017, for a review). Be-
cause the target emission comes from narrow spectral features, one
can observe at may closely-spaced frequency bands to map the dis-
tribution of emitters in three dimensions. Intensity maps can there-
fore access a large number of spatial modes for large-scale structure
measurement, and can study the statistical properties of large num-
bers of galaxies which are too faint to detect individually.

This great potential science output has spurred the creation of
LIM surveys targeting a number of different spectral lines. The first
line targeted was the 21 cm spin-flip transition in neutral hydro-
gen, which has been long known as a powerful probe of large-scale
structure and reionization (Pritchard & Loeb 2012, and references
therein). The 21 cm intensity mapping signal has been detected in
cross-correlation by a pair of surveys (Masui et al. 2013; Anderson
et al. 2018), and a number of other surveys have been completed
or are in progress across a wide swath of cosmic history (Tingay
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et al. 2013; van Haarlem et al. 2013; Bandura et al. 2014; Ali et al.
2015; Xu et al. 2015; Newburgh et al. 2016; DeBoer et al. 2017).
Recently, though, there has been a surge of interest in using other
lines for intensity mapping. Different lines trace different processes
and different phases in the interstellar- and intergalactic media, and
also have different experimental systematics. There are tentative
detections of intensity maps of Lyman-α (Croft et al. 2018), C II

(Pullen et al. 2018; Yang et al. 2019), and CO(1-0) (Keating et al.
2016), and experiments are underway or proposed to make defini-
tive measurements of these and other lines (Kovetz et al. 2019; Hill
et al. 2008; Crites et al. 2014; Doré et al. 2014; Bower et al. 2016;
Cooray et al. 2016; Li et al. 2016; Aguirre & STARFIRE Collab-
oration 2018; Lagache 2018; Padmanabhan 2018b; Stacey et al.
2018).

With this degree of experimental investment, it is important
to develop the necessary theory and analysis tools to interpret the
results of these surveys. Several challenges remain with this task.
Line intensities are determined by complex and highly nonlinear
gas physics which can only be captured by quite sophisticated mod-
els (see, e.g. Popping et al. 2019). As a result of this complexity,
many works focus on constraining intermediate statistical proper-
ties of the target galaxies, typically either a relationship between
halo mass and line luminosity (Li et al. 2016) or a line luminosity
function (Breysse et al. 2017).

This goal is made more difficult by the unresolved nature of
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intensity mapping data, as we must construct statistics which link
the intensity field and the underlying galaxy distribution. For exam-
ple, the power spectrum of a map can be used to determine the first
two moments of the target luminosity function (Lidz et al. 2011;
Breysse & Alexandroff 2019). Further detail can be obtained us-
ing, for example, the one-point statistics of a map (Breysse et al.
2017; Ihle et al. 2019). However, these statistics may not suffice to
extract all of the useful information from a confused, highly non-
Gaussian intensity map, especially given that the target line is rarely
the only or the most dominant source of emission. These statistics
must be modified and lose additional information due to the near-
guaranteed presence of foreground contamination, both from local
Milky Way emission (see, e.g. Morales & Wyithe 2010; Wolz et al.
2015) and from extragalactic sources (Sun et al. 2018; Switzer et al.
2019). In light of the difficulty of measuring a luminosity function
from a contaminated map, it may be useful to consider different
analysis approaches. In this work, we will explore possibilities for
applying machine learning methods to intensity maps.

In recent years, machine learning (ML) methods have shown
to be very useful for a variety of applications in the field of cos-
mology1, and will continue to contribute significant cosmological
insights over the following decade and beyond (Ntampaka et al.
2019). The utility of machine learning methods emerges from their
ability to find patterns in data, and, in many cases, to relate these
patterns to higher-level information about samples from the data
set. For example, when applying a neural network to solve the clas-
sic computer vision application of classifying handwritten digits,
the network learns patterns in the spatial distribution of the two di-
mensional pixel intensities in order to predict the higher-level class
(an integer between 0-9) of an individual digit sample drawn from
the test set. Similarly, in cosmology, machine learning can be used
on data from simulations, observations, or (possibly) a combina-
tion of the two to predict cosmological or astrophysical parameters
(Ravanbakhsh et al. 2017; Shimabukuro & Semelin 2017; Schmit
& Pritchard 2018; Gillet et al. 2019a; Ribli et al. 2019a; Dous-
sot et al. 2019), perform model discrimination (Schmelzle et al.
2017; Merten et al. 2019), augment simulations and create synthetic
data (Rodríguez et al. 2018; Berger & Stein 2019; He et al. 2018;
Zhang et al. 2019; Kodi Ramanah et al. 2019; Tröster et al. 2019;
Agarwal et al. 2018), identify structures and predict their proper-
ties (Aragon-Calvo 2019; Ho et al. 2019; Ribli et al. 2019b), or to
reconstruct initial conditions (Modi et al. 2018), among many other
applications.

Convolutional neural networks (CNNs) are a common class
of deep learning first proposed in Fukushima (1980); Lecun et al.
(1998) and popularized by the state-of-the-art classification results
of Krizhevsky et al. (2012). CNNs are best designed to process data
that come in the form of multiple arrays; the most common exam-
ple being the three colour channels, or RGB pixel arrays, of two
dimensional images, and they have had success in a wide variety
of detection, segmentation, and recognition applications. A CNN
transforms from an input N-dimensional array to e.g. a prediction
of which class the array belongs to. Convolutional layers consist of
a number of filters, each containing of a set of trainable weights (de-
termined through backpropagation (Rumelhart et al. 1988)) which
are applied to a series of local patches of the previous layer. This
allows the network to detect local features in the previous layer, and
the network can learn higher-level information in each succeeding
level.

1 comprehensive list at https://github.com/georgestein/ml-in-cosmology

CNNs are therefore particularly suited to problems in cosmol-
ogy that require environmental multi-scale information to solve.
For example, it is well known that the large-scale structure of the
universe is defined by the network of clusters (small), filaments
(elongated), and voids (large), of the cosmic web (Bond et al.
1996), each with differing physical scales. One may then hope that
if, for example, the observable signal from clusters is related to the
surrounding environment: the first levels of a CNN will extract fea-
tures relevant to the scale of a cluster, following levels will focus on
features relevant to broader cluster environments, succeeding lev-
els will add features related to the large-scale distribution of matter
in the universe, and this multi-scale information will be combined
in the final levels to make a prediction (see Zeiler & Fergus (2013)
for investigations into which input stimuli excite individual feature
maps at any layer in a model).

Although powerful in theory, many observational cosmologi-
cal applications of supervised machine learning still have obstacles
to overcome before becoming competitive with alternative meth-
ods. Astronomy is a field of observation, and contains little to no
possibility of experimentation. Additionally, the exact amplitude,
extent, and spectral evolution of many of the cosmic signals that
we are attempting to detect in fields such as intensity mapping are
presently unknown, and labeled observational data sets are in many
cases theoretically difficult or impossible to acquire. The field has
therefore been focused more on studies performed on synthetic data
to determine the general viability of machine learning methods to
extract cosmic signals.

The use of synthetic data is not uncommon in machine learn-
ing applications (Tremblay et al. 2018; Patki et al. 2016), but is
generally used to augment small existing data sets and is followed
by additional training on the true labeled data. Currently this is
not possible for many observational cosmology applications, so we
must hope that: a) the synthetic data perfectly reproduces reality,
and that by training on synthetic observations and using the net-
work to predict on a true observation of our universe therefore pro-
duces no biases or uncertainties (unlikely), b) the network is suf-
ficiently robust to any differences between the synthetic and real
data (e.g. unaccounted for instrument errors, unknown foreground
contamination, etc.), and any biases and uncertainties are well un-
derstood, or c) labelled training data from cosmological measure-
ments becomes plentiful enough to rely on, and machine learned
methods outperform traditional ones. In this work we rely purely
on synthetic data, and focus on scenario b). By first studying the
ideal case of perfectly known cosmic signal and instrument noise,
and then extending to add unknown foregrounds and noise to mock
up a real observation, we can shed light on the true ability of a
network trained on synthetic data to measure cosmic signals.

This work is not the first attempt train CNNs on simulated in-
tensity maps. Previous works primarily study maps of the 21 cm
spin-flip transition in neutral hydrogen (Gillet et al. 2019b; Hassan
et al. 2018, 2019; Zamudio-Fernandez et al. 2019). Many of these
works focus on the Epoch of Reionization (EoR), where the sig-
nal is dominated by emission from the intergalactic medium which
is gradually becoming ionized by emission from the first galaxies.
In this work. we consider a different regime, where line emission
primarily comes from within individual galaxies. In this case, in-
dividual sources are typically small compared to instrument reso-
lution, so there is a well-defined line luminosity function that we
can seek to constrain. We focus on CO intensity mapping as op-
posed to HI, which gives insight into the molecular phase of the
high-redshift ISM. We seek to be as model-agnostic as possible in
our predictions by forecasting constraints on the value of the lumi-
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nosity function in different bins rather than constraining a specific
parameterized model.

For our fiducial survey, we consider a map of the CO(1-0)
line at redshift z ∼ 3 made by the CO Mapping Array Pathfinder
(COMAP) experiment (Li et al. 2016), currently taking data at
the Owens Valley Radio Observatory. The CO luminosity function
probes the abundance of molecular gas in high-redshift galaxies. As
stars form from molecular gas, the CO luminosity is an important
probe of the broader galactic ecosystem (see reviews by, e.g. Bo-
latto et al. 2013; Carilli & Walter 2013; Heyer & Dame 2015). As
stated previously though, our ML methods will be directly relevant
to any line which is emitted by a population of discrete sources.

We demonstrate that for our fiducial model the neural network
we create can recover the luminosity function from a CO intensity
map with accuracy comparable to that of conventional methods.
The accuracy only degrades slightly when contamination is intro-
duced from instrument noise and uncleaned foregrounds. However,
when testing on models on the fringes of our training space, or
on models which were not trained at all, we find that the network
sometimes outputs substantially inaccurate results. These findings
demonstrate that, while machine learning methods have great po-
tential for this type of data analysis, care must be taken when using
synthetic data to analyze real observations.

This paper is organized as follows. In Section 2, we describe
how we generate our data and training set. In Section 3, we de-
scribe the CNN that we will train. In Section 4, we test the accuracy
of our CNN on different scenarios for underlying LIM, noise and
foregrounds. In Section 5, we discuss the strengths and weaknesses
of our CNN. We conclude in Section 6. Throughout this work we
assume a cosmology consistent with Planck Collaboration et al.
(2018) with Ωm = 0.286, ΩΛ = 0.714, Ωb = 0.047, h = 0.7, σ8 =
0.82, and ns = 0.96.

2 SIMULATED MAPS

Very little actual CO intensity mapping data currently exists, so as
stated above we have to resort to synthetic data to train our neural
network. For this purpose, we use a set of simulated CO line inten-
sity observations constructed by coupling the LCO(Mhalo) model
of Li et al. (2016) to dark matter halo catalogues created using
the Peak Patch method (Stein et al. 2019). Our goal is to train a
neural network that can take one of these simulated maps as input
and output a list of galaxy abundances at given CO luminosities.
In addition to the intrinsic CO signal we add various noise sources
to our maps, including the thermal white noise expected from the
COMAP experiment, possible point source foregrounds with con-
tinuum spectra, and ‘geometric’ noise from crude approximations
of typical instrumental scan strategies. Our simulations are not in-
tended to fully reproduce the range of possible signals and noise
in a real CO experiment. Rather they are meant to explore how a
CNN-based analysis might perform in a variety of conditions.

Table 1 lists the experimental parameters we use for our mock
LIMs. We represent our generated LIMs as three dimensional ar-
rays of size 64x64x100. Each element records the total intensity
measured at that location in the map. The first two dimensions
are spatial dimensions on the sky representing a 1.5°×1.5°survey
field, while the third dimension carries the spectral information.
Although COMAP is designed with 512 frequency channels, we in-
tentionally degrade the frequency resolution of our mocks down to
100 channels due to memory considerations. The 64x64 maps over-
sample the COMAP beam somewhat, so we can add in the effects

Table 1. Experiment setup for COMAP Phase one.

Parameter Value

Beam FWHM (armin) 4
Frequency Band (GHz) 26-34

Redshift coverage 2.4-3.4
Channel width (MHz) 15.6

Noise per 16 armin2 voxel (µK) 11
Field size (deg2) 2.25

of COMAP beam smoothing by convolving each slice of our maps
with a 4′ Gaussian filter. For a given spectral line, the observed
frequency directly determines the emission redshift, so the third di-
mension in our maps represents the redshift (or distance, given a
cosmological model) of CO emitters along the line of sight. In all
of the following, a “voxel" refers to a single element in a three-
dimensional map, and a “pixel" refers to all of the voxels along a
line of sight when the first two dimensions (position on the sky) are
kept constant.

2.1 Dark Matter Simulations

We generated the large ensemble of dark matter halo catalogues
required to train our CNN using the Peak Patch method, a fully
predictive initial-space algorithm to quickly generate dark matter
halo catalogues in large cosmological volumes (Stein et al. 2019).

To cover the full redshift range of the COMAP experiment
(z = 2.4 − 3.4), with no repetition of structure, the simulation box
size was (1140 Mpc)3 (comoving) and used a cubic lattice of 40963

particles. This achieves a minimum halo mass of 2.5×1010M�
[M200,M ], comparable to values typically assumed for the mini-
mum mass of a CO-emitting halo (Lidz et al. 2011; Li et al. 2016),
and when projected onto the sky results in a 9.6°×9.6° field. We
then separate the 9.6°×9.6° area into multiple 1.5°×1.5° patches to
match the size of a COMAP field. Each 1.5°×1.5° patch we use
does not overlap with any other to minimize nonphysical correla-
tions in our training data.

The efficiency of the Peak Patch method allowed for 161 in-
dependent full-size realizations in 82,000 CPU hours. The resulting
halo catalogues contain roughly 54 million halos, each with a posi-
tion, a velocity, and a mass. Peak Patch has the ability to simulate
continuous light-cones on-the-fly, so stitching snapshots together
was not required to create the light-cone. The dark matter halo cat-
alogues were additionally mass corrected by abundance matching
along the light-cone to Tinker et al. (2008).

2.2 CO Modelling

The peak-patch simulations described above give us a map of dark
matter halos, which we can turn into a CO intensity map by assum-
ing a CO luminosity-halo mass relation. For this purpose, we adopt
the model of Li et al. (2016) which we briefly summarize here.

The model is defined by empirical parametric relations be-
tween the halo mass Mhalo, star formation rate (SFR), infrared (IR)
luminosity LIR, and the CO luminosity LCO, in the following chain:

Mhalo
A−→ SFR B−→ LIR

C−→ LCO.

A: The star formation rate of a given dark matter halo is obtained
by using the results of Behroozi et al. (2013a,b), which empirically
quantified the average stellar mass history of dark matter halos as a
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function of halo mass and redshift. A log-normal scatter of σSFR is
added to describe the scatter about the mean value.

B: IR luminosities are given through the relation

SFR = δMF × 10−10LIR, (1)

where the SFR is in units of M� yr−1 and LIR is in units of L� .
C: CO luminosities are obtained from the total infrared luminosity,

assuming a power-law relation of the form

log LIR = αlog L′CO + β, (2)

where L′CO is in units of K km s−1, which we then convert in our
final maps to brightness temperature in µK. A second log-normal
scatter of σCO is also added to describe the scatter about this mean
value.

This model therefore contains five free parameters: three pa-
rameterizing the mean relations {δMF, α, β} and two parameters
describing the scatter about the mean, {σSFR , σLCO

}. In this
work we fix the scatter about the mean to the fiducial values of Li
et al. (2016), {σSFR , σLCO

} = {0.1, 0.1}, while varying the oth-
ers in the training step. We do not train our CNN to predict these
model parameters as one may do with a Markov Chain Monte Carlo
(MCMC) or similiar analysis. Our CNN is trained to relate LIMs
to luminosity functions independent of model.

We want to train our network with maps simulated from a vari-
ety of different CO-halo connections, which we can accomplish by
generating training data using different parameter values. We will
refer to models generated with the fiducial Li et al. (2016) parame-
ters ‘fiducial Li’ maps and maps generated with random parameters
‘random Li’ maps. We take as “priors" on these parameters 10% of
the priors quoted in Li et al. (2016).

We used the publicly available limlam_mocker2 package
for line intensity mocks to create the COMAP intensity mocks and
corresponding luminosity functions from the 161 halo catalogues,
resulting in 5796 possible independent 1.5°×1.5° COMAP mocks
for each choice of parameters/noise/foregrounds. Figure 1 shows
range of luminosity functions generated for training purposes. As
the luminosity increases, the variance of the luminosity increases
as well.

2.3 Noise and Foregrounds

To explore how our network might perform in a true analysis
we must include instrumental noise and foregrounds in our sim-
ulations. In this study we use relatively simple models for both
of these effects, considering only thermal instrumental noise and
point-source extragalctic foregrounds.

Thermal noise can be modeled by adding an independent
Gaussian random number with zero mean and a variance of σ2

wn
to each voxel of a LIM. In the case of COMAP Phase 1 the noise
is expected to be σwn ' 11 µK (Li et al. 2016) in a 4′ voxel for a
map with 512 frequency channels. To scale this noise to different
voxel sizes we make use of

σwn ∝
1

δθ
√
δv
. (3)

We find that, in order to match the COMAP noise properties, our
voxels need to have σwn ≈ 13.88 µK. As the noise properties of a
given survey may not be precisely known a priori, we will split our

2 https://github.com/georgestein/limlam_mocker
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Figure 1. Range of luminosity function values used while training. The
shaded region is the range where 95% of luminosity function values of a
given luminosity fell. The orange curve shows the ’Fiducial Li’ luminosity
function and is different than the mean luminosity function used in training.
Note that the ’Fiducial Li’ curve is within 95% region of trained luminosity
functions. It’s high value compared to the trained luminosity function range
is due to taking the average of logged values and the log-scale of the y-axis.

mocks between those with ‘fiducial noise’, i.e. those with the above
COMAP noise model, and those with ‘random noise’, in which we
assume a different noise amplitude σwn. In either case, a given
mock will have a random realization of the given noise model.

A uniform white noise is the only noise source in the ideal
case, but in practice many observations include additional, some-
times unknown, sources. One example comes from the scan strat-
egy of the telescope which in general results in different integration
times on different pixels, with the central region of the survey gen-
erally having a longer integration and therefore a lower noise level.
Later when testing our network, we will also include a model of
this type of ‘geometric’ noise, where pixels within 5% of the edge
of the survey area have an additional white noise contribution given
by

σgeo = σgeo,max
max(dmax − d, 0)

dmax
. (4)

In this simple model, σgeo,max is the maximum amount of geo-
metric noise we should add at the absolute edge, d is the short-
est distance from the edge of the LIM to a given pixel as a frac-
tion of the the length of the LIM. We cut off the added noise at
a distance dmax = 0.05. For our tests we somewhat arbitrarily
σgeo,max = 100 µK. We leave detailed modeling of specific scan
strategies to future work.

Our simulated intensity maps also include radio point sources
as possible foregrounds, modeled following Keating et al. (2015).
We assume the differential source count per unit area per flux is
described by the power law,

dN
dS
= N0

(
S

1 mJy

)−γ
, (5)

where N0 is a normalization parameter per unit area and flux, S
is the source flux, and γ is the power-law index (Muchovej et al.
2010). The range of the parameters in this foreground model were
found to be N0 = 32.1 ± 3.0 deg−2 mJy−1 and γ = 2.18 ± 0.12.

As we assume our foregrounds are continuum emitters, we as-
sign them pixel-by-pixel rather than voxel-by-voxel. As with our
signal and noise models, we can choose to draw either ‘fiducial
foregrounds’ where we assume best fit parameter values from the
above foreground models, or ‘random foregrounds’, where we ran-
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Table 2. Summary of signal, noise, and foreground models used for training and testing.

Model Type Summary Used for Training

CO Signal

Fiducial Li Li et al. (2016) CO-halo mass model with fidicual parameter values No
Random Li Li et al. (2016) model with randomly chosen parameter values Yes

Padmanabhan Padmanabhan (2018a) CO-halo mass model with fiducial parameter values No
Less Bright Sources Random Li maps chosen by hand to contain < 500 sources above L = 106 L� Yes1

Instrument Noise

No noise No added noise. Hypothetical sample-variance dominated measurement Yes
Fiducial Noise Thermal white noise with fiducial COMAP amplitude No
Random Noise Thermal white noise with amplitude drawn uniformly from [0, 25.25] Yes

Geometric Noise Added white noise around survey edge with amplitude following Eq. (4) No

Foregrounds
No Foregrounds No added foregrounds, simulates perfect foreground cleaning Yes

Fiducial Foregrounds Point-source emitters drawn following Muchovej et al. (2010) data No
Random Foregrounds Muchovej et al. (2010) with random parameters Yes

1 ‘Less Bright Sources’ maps are a subset of the ‘Random Li’ mocks, so they appear naturally in the training data.

domly assign parameter values before generating a realization. In
each pixel, we Poisson draw the number of sources based on the
expected sources per square degree (thus neglecting large-scale
structure correlations in our foregrounds). We then randomly as-
sign each source an overall with probability set by Eq. (5) and a
spectral index drawn from the distributions plotted in Figure 3 of
Muchovej et al. (2010). We can then use this slope and normal-
ization to compute the contribution of the source to each of our
frequency

This is a somewhat simplistic and optimistic model of fore-
ground contamination, as it does not include Galactic emission and
ignores emission from point sources below the detection threshold
of Muchovej et al. (2010). However it does capture the essential
features necessary for our purposes, in that it results in a map of
bright, continuum emission which does not correlate with the large-
scale structure of our CO signal. As with the instrument noise, we
leave a detailed exploration of foreground emission to future work.

Both the white-noise and foreground additions to the LIMs
are randomly generated each time an LIM is used for training. The
same is true of geometric noise, but it is only used for testing pur-
poses after training. We ensure these additions are not static ob-
jects in order to help prevent overfitting and give the network more
unique LIMs to use for training.

In the above we have described several different choices we
can make when modeling the signal and noise in our maps. For the
convenience of the reader we summarize these options in Table 2.
Unless specified, a given map is assumed to use ‘random noise’ and
‘random foregrounds’ models.

In summary, to construct a single CO realization, we:

• Generate a dark matter halo catalogues 2.1
• Apply a CO-halo mass model, to paint CO luminosities onto halos
(Sec. 2.2).
• Use the CO luminosities to produce clean CO LIMs as well as
record the true underlying luminosity function (Sec. 2.2).
• Generate noise and foreground realization and add to map (Sec.
2.3).
• Apply Guassian smoothing of 4′ beam to map to match COMAP
beam size.

When training, we use the ‘Random Li’, ‘Random Noise’, and
‘Random Foreground’ models from Table 2. The first three steps
are done before training as it would take too long to generate new
LIMs from scratch each time one was needed. Noise, foregrounds,

and beam smoothing are added during training each time a LIM is
looked at.

Sample slices of our mock LIMs can be seen in Figure 2. We
show a ‘Fiducial Li’ LIM as well as maps for white noise, fore-
grounds, and the sum of all three components. Both the foregrounds
and features of the original random Li LIM are visible in the com-
bined LIM. For clarity, we also show a realization of the Geometric
Noise that we will use for later tests, as well as a version of the
combined signal/noise/foreground map before beam smoothing.

3 CONVOLUTIONAL NEURAL NETWORK

The goal of our CNN is to take any LIM as input, and output val-
ues of the underlying luminosity function. Due to GPU-memory
and training-speed constraints we will downsample our 64x64x100
maps to 64x64x10 by summing groups of 10 voxels along the line
of sight. By lowering the resolution, we can make a larger CNN
and train with larger batch sizes. By adding voxels together, we
conserve the total CO luminosity in our LIM, but sacrifice spatial
information. Our forecasts will thus underestimate the constrain-
ing power of a network which could handle the full 64x64x512
COMAP data cube.

CNNs are fast NNs designed for classification and regression
on images, looking for patterns in a translationally invariant fash-
ion. Normal images contain two spatial dimensions and a third
which stores the intensity of different colors of light (usually three
for RGB images). LIMs behave similarly, albeit with many more
spectral channels. However, a key general advantage of LIMs is
that, neglecting noise and foregrounds, the spectral information can
be converted directly into a line-of-sight distance. CNNs typically
convolve images in two dimensions, but we can modify this ap-
proach to use 3D convolutions and easily make use of the added
tomographic information. This one change allows us to make use
of the standard framework of CNNs for three-dimensional LIMs.

After testing a number of CNN architectures we choose a
residual learning framework first proposed in He et al. (2015) for
our network architecture. Each layer in these networks (commonly
abbreviated as ResNets) learns the residual mapping with reference
to its inputs instead of directly learning the underlying mapping.
This has been shown to improve the training of deep networks
with negligible memory or speed tradeoffs. The form of Resnet that
we used is a slight modification of the 50-layer network from He
et al. (2015). The ordering of the layers was kept the same, but we
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Figure 2. Single slices of different components of our LIMs. All of the maps have had the log-modulus applied to their intensities (see Eq. 6). Top Left: ‘Fiducial
Li’ LIM. Top right: ‘Fiducial Noise’-only realization. Middle left: Point source foregrounds from ‘Fiducial Foregrounds’ model. Middle right: Sum of previous
signal, noise, and foreground maps. Bottom left: ‘Geometric Noise’ realization. Bottom right: Signal+noise+foreground map before beam smoothing. Note the
difference in the color scales between the top two rows and the bottom row.

added an extra residual block in each layer to increase the learning
ability of the network without significantly increasing the memory
requirement. Furthermore we modified the end of the network to
match our required output and used the maximum number of filters
that our GPU would allow. As mentioned previously, we have also
modified the architecture to use three-dimensional convolutions.

This architecture was not designed for this specific problem so
we do not believe that it is truly the most optimal possible CNN. A
detailed architecture optimization is beyond the scope of this work,
but as ResNets are very common in recent cosmological applica-

tions of CNNs we expect the relative results shown here to be rep-
resentative. For example, we would expect the decrease in accuracy
of prediction when considering noise/foregrounds beyond the fidu-
cial case to hold for more general network designs.

3.1 Network Architecture

Here we summarize the modified He et al. (2015) network we use
for this work. A basic tenet of machine learning is that bigger net-
works allow one to learn more (i.e. learn a more complicated model
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Figure 3. Basic residual block structures used. The teal blocks are used to denote convolutional layers. Both blocks use a bottleneck design of a 1x1x1
convolution followed by a 3x3x3 convolution and ending with a 1x1x1 convolution of varying filter size. They also include a shortcut which directly adds the
input data to the output of the three convolutions in the bottleneck. See text in Section 3.1 for more details.

or learn a less complicated model better). However, there are ex-
ceptions to this rule. Adding more layers to a network can lead to
degradations of the data flowing through the network and the gra-
dients needed for back propagation, decreasing the accuracy of a
CNN. To get around this, one can make use of a Resnet. At the
heart of the Resnet is the residual block. A residual block consists
of multiple convolutional layers and a shortcut that connects the
input directly to the output. Adding a shortcut helps prevent degra-
dation of network performance because it allows the residual block
to function as a small change on top of an identity mapping be-
tween input and output. This means no residual block should give
worse results then a previous layer of the network, an issue which
large networks without residual blocks face.

After most convolutions, we make use of batch normalization
(BN) before applying the leaky rectified linear unit (LReLU) acti-
vation function (Maas et al. 2013). BN helps prevent vanishing and
exploding gradients by normalizing the output of a convolution for
a given batch of data (Ioffe & Szegedy 2015). Zero padding is used
throughout to obtain the required output dimensionality. Multiple
convolutions are grouped together to form residual blocks. Our
residual blocks make use of a bottleneck design. The bottleneck
replaces two 3x3x3 convolutions with three layers of two 1x1x1
and one 3x3x3 convolutions. The 1x1x1 convolutions in the bot-
tleneck are responsible for reducing and increasing dimensionality.
Bottleneck designs are used to decrease computational time while
retaining network performance.

In our network we use two different types of residual blocks
which can be seen in Figure 3. Both blocks depend on two param-
eters: filters-in (FI) and filters-out (FO). FI and FO are the number
of filters the convolutions use at at the beginning and the number of
filters the output should have, respectively. The first residual block
on the left, R1(FI,FO), takes input of any size and number of chan-

nels. It then uses a 1x1x1 convolution to change the number of
filters to FI and is followed by BN and a LReLU. Next we use a
3x3x3 convolution with FI channels followed by another BN and a
LReLU. The third convolution is a 1x1x1 convolution that changes
the number of filters to FO and is followed by BN. We then make
use of the shortcut and take the original input and add it directly to
the output of the third convolution. We employ an ‘identity short-
cut’, named so as we do not modify the input data when using it in
the shortcut. A final LReLU is applied before sending the data to
the next layer. The second residual block is similar, but it changes
the dimensionality of the data midway through. The second con-
volution in this block uses a stride of 2x2x2 (denoted by /2 in the
diagram) to lower the dimensionality. As we changed the shape of
the data midway through the block, the shortcut is no longer an
identity shortcut. We apply a 1x1x1 convolution with stride 2x2x2
and FO filters to the shortcut to ensure it matches the output of the
rest of the block.

We define an R1xN block as N R1 blocks in a row as seen
in Figure 4. With our residual blocks in place, we can now build
our full network. Figure 5 displays the full network that accepts a
64x64x10 LIM and outputs 49 values of the luminosity function.
The network starts with a 7x7x7 convolution with 64 filters and a
stride of 2x2x2 to reduce the dimensionality by 2. As usual, we fol-
low the convolution layer with BN and a LReLU. We then follow
up with a 3D max pool with kernel 3x3x3 and stride of 2x2x2. A
max pool layer takes the maximum value within the kernel as out-
put as opposed to a convolution which is effectively the weighted
average of the input. This pool reduces the dimensionality of the
data by 2 because of the 2x2x2 stride. After the pool, we apply
three R1 blocks. We then have three sets of one R2 block followed
by multiple R1 blocks, all with the same FI and FO. The R2 block
reduces dimensionality while the R1 blocks increase the depth of
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Table 3. Architecture for our Resnet. Building blocks, as seen in Figures
3 and 4, are shown in parentheses with the number of blocks stacked. Di-
mensionality reduction is performed by conv2_1, conv3_1, conv4_1 and
conv5_1 by using a stride of 2 for the max pooling or convalution layers.
The total number of training parameters in the network is ∼ 1.6 × 108.

layer name output size layer features

conv1 32x32x5 7x7x7, 64 stride 2

conv2_x 16x16x3

3x3x3 max pool stride 2©­«
1x1x1, 128
3x3x3, 128
1x1x1, 256

ª®¬ x 3

conv3_x 8x8x2 ©­«
1x1x1, 256
3x3x3, 256
1x1x1, 512

ª®¬ x 5

conv4_x 4x4x1 ©­«
1x1x1, 512
3x3x3, 512
1x1x1, 1024

ª®¬ x 7

conv5_x 2x2x1 ©­«
1x1x1, 1024
3x3x3, 1024
1x1x1, 2048

ª®¬ x 4

global_pool 2048 7x7x7, global avg pool 3D

fc1 1000 1000 fully connected

fc2 49 49 fully connected

Figure 4. A series of N R1 blocks is defined as an R1xN block. This struc-
ture appears multiple times in our Resnet. The purple blocks are used to
denote R1 blocks.

the network. Following the final set of R1 blocks, the data is in the
form of a 2x2x1 map with 2048 filters. On these objects we ap-
ply a 3D global average pool which takes the maximum value of
the 2x2x1 data for each channel and returns a single value for each
channel3 giving 1-dimensional data. Second to last, we use a fully
connected layer with 1000 neurons which is followed with BN and
a LReLU. Finally, we end with a fully connected layer of 49 neu-
rons with a linear activation function. Each one of these neurons
represents the value of the luminosity function at a specific lumi-
nosity. This architecture can be seen in Table 3.

3 channels for CNNs refer to the number of convolutional filters applied at
the last convolutional layer

Figure 5. A diagram of our full network. A 64x64x10 intensity map is
converted to 49 different luminosity function values through the use of
many convolution layers, two pooling layers and two fully connected layers.
Here, the teal blocks represent convolutional layers, the purple represent R1
blocks, the red show pooling layers, the yellow show R2 blocks and green
show fully connected layers.

3.2 Implementation

We have made a custom implementation of our Resnet in Keras
using the TensorFlow backend (Chollet et al. 2015; Abadi et al.
2015). We use the default α = 0.3 for our LReLU’s. To help with
overfitting we apply a dropout rate of 50% to the second to last
layer (Hinton et al. 2012; Srivastava et al. 2014). We obtained our
best result when using the Adam optimizer (Kingma & Ba 2014).
We used a mean-squared-error loss function for training.

As neural networks work better when data contained within
them is similar in magnitude (this includes the input and the data
passed between layers), we apply a log modulus function to the
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values in the intensity map given by

T̂ = sign(T) log10 (|T| + 1) , (6)

where T is the intensity of a given voxel in brightness temperature
units. The sign and absolute value of T allow us to handle vox-
els with negative intensity which can come about due to the added
white noise. After transforming the size of the LIM and the inten-
sities within each voxel, we feed the new LIMs into the CNN. The
output of our network was chosen to be

L(L) = log10 (LΦ) (7)

at 49 values of L, where Φ = dn
dL is the number density of CO

hosting galaxies with luminosity between L and L + dL. Returning
log10 (LΦ) gives an output that only spans an order of magnitude. It
should be noted that the CNN itself does not know that it is measur-
ing a luminosity function at specific values, only that it is returning
49 ordered numbers. We consider luminosity bins logarithmically
spaced between 103.5 and 107 L� .

For training and testing our model we start with 5796 ‘Ran-
dom Li’ LIMs, generated as described in Sec. 2. The LIMs were
split into training and validation data with 80% of the maps be-
ing used for training and 20% used as validation to test our results.
Separating the training and validation data at this point means the
network cannot benefit from simply learning the underlying peak-
patch halo catalogues. As noise and foregrounds may be modeled
imperfectly in a real observation, we made the conservative choice
to use ‘Random Noise’ and ‘Random Foreground’ contamination
models. At each step, one of the training signal maps is combined
with noise and foregrounds generated with random parameter val-
ues. This allows us to turn our few thousand signal maps into order
a million training realizations. We also make sure to train on noise-
less and foregroundless LIMs 10% of the time to make sure the
trained CNN learns to interpret clean LIMs.

We trained with batch sizes of 40 LIMs, set by the GPU capac-
ity, and the somewhat arbitrary choice of 150 batches to an epoch
for 200 epochs. We employed 4 Nvidia K80 GPUs with 24 GB
each. The training history of the final CNN is shown in Figure 6. We
find that the network does most of its learning within ∼ 2 epochs.
Learning then slows down dramatically, but the decreasing trend in
the loss remains throughout training. Note that the validation loss
can be less than the training loss because of the dropout applied
to the second to last fully connected layer of the network. This is
because during training the Resnet only has 50% of the neurons
in the second to last layer working at a time, but during validation
or post-training testing 100% of the neurons are functioning. The
Resnet is not as effective without all of its neurons functioning so
the loss is often less for validation tests than during training.

4 RESULTS

We refer to the trained network as our Resnet. As a sanity check,
we tested it on ‘Random Li/Noise/Foreground’ LIMs which had
been rotated by integer multiples of 90°. Our resnet should be rota-
tionally invariant (at least for 90° rotations about an axis parallel to
the line of sight of the LIMs), so it should perform similarly on the
rotated maps. After 100 trials, both rotated and unrotated maps had
the same average loss and same average variance of the loss within
< 1%.

Example outputs of our Resnet can be seen in Figure 7. We
show three cases chosen by hand to illustrate different regimes. In
the first, the Resnet accurately predicts the luminosity function for

0 25 50 75 100 125 150 175 200
Epoch

10−1

100

Lo
ss

Training
Validation

Figure 6. Training and validation loss after each epoch. The validation loss
being less than the training loss is a result of the dropout in the second to
last layer of the network.

a LIM generated from parameters similar to the ‘Fiducial Li’. The
next shows a case where the Resnet performs similarly well for a
LIM with a very different luminosity function. Finally, we show
a case where the Resnet fails to accurately reproduce the true lu-
minosity function. By inspection, we find that the Resnet tends to
perform worst when the underlying luminosity function has a low
number of bright sources compared to the ‘Fiducial Li’ model.

When training, we know the true luminosity function of a sim-
ulated map, so we can use a loss function to assess the network’s
performance. However, in a real analysis we would hope to test our
trained network on a single data set where the true values are un-
known. In order to estimate how much we could trust the network
in this situation, we examine the fractional difference

δLΦ =
LΦprediction(L) − LΦtrue(L)

LΦtrue(L)
. (8)

as a function of luminosity between the predicted and true quanti-
ties. With a large ensemble of test realizations, we can generate a
confidence interval around the true value, which approximates the
error bar we would place on a true measurement. For our figure of
merit, we will quote the 95% confidence interval on δLΦ.

Now that we have a trained Resnet, we can study how it per-
forms under different conditions. We focus on three main scenarios:

(i) The case the Resnet was designed to handle best: a ‘Fiducial Li’
luminosity function with varying noise and foreground amplitudes.
This models the situation where our fiducial model is close to the
truth.

(ii) A variety of ‘Random Li’ mocks. Though the Resnet was trained
on models in this space, the nature of our priors means that less time
is spent on training models that differ significantly from fiducial.

(iii) Models and contaminants outside of the space of training data.
This accounts for the possibility that the signal on the sky contains
aspects not accounted for in the synthetic data.

For each test, we examined a number of maps equal to the number
of validation maps used (5796 × 0.2 ≈ 1159 maps). It should be
reiterated that all of the dark matter catalogs used in this testing
step were taken from the set left out of the training data. Refer to
Table 2 for a reminder of what effects are included in each test set.

4.1 Tests on trained data

In order to assess the performance of our Resnet we can compare to
forecasts using analytic methods. For the simulated COMAP data
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Figure 7. Three luminosity function predictions from the Resnet and the accompanying true underlying luminosity function. The left figure shows a map
with underlying luminosity function that is similar to ‘Fiducial Li’, the middle and right figures show the same for models which differ significantly from the
fiducial case, the Resnet performs well in the middle case and poorly in the right case. The three maps were manually chosen from the validation set.

we are using here, we can compare our forecased constraints on the
luminosity function to those from Ihle et al. (2019). Their work,
which forecast constraints on the underlying luminosity function
of a LIM using a joint power spectrum and voxel intensity distribu-
tion analysis (PS/VID analysis hereafter), used what we are calling
‘Fiducial Li’ and ‘Fiducial Noise’ models with no foregrounds.

The comparison is shown in Figure 8. The contour for the
Resnet shows the 95% confidence interval about the median of the
relative errors over the entire set of LIMs tested while the Ihle et al.
(2019) 95% confidence interval comes from their MCMC analysis.
The red crosses show the luminosity bins we used for our Resnet.
Though we are comparing two forecasts using the same models, the
forecasts are not exactly equivalent. The PS/VID forecasts found
errors on the parameters of the Li et al. (2016) model, then prop-
agate those errors to the luminosity function. The PS/VID analysis
was also able to use the full frequency spectrum of the COMAP
data, while our preliminary tests here had to sacrifice much of this
information for memory reasons.

With these caveats in mind, the CNN and analytic forecasts
appear to perform comparably well, with the Resnet confidence in-
terval actually being smaller at low luminosities. The Resnet does
worst at the highest luminosities, where any given box is expected
to have very few sources. We leave a full comparison between these
methods, where the PS/VID MCMC is run on our type of non-
parametric model and we have enough computing resources to train
on the full COMAP cube, to future work. Even this rough compar-
ison though is enough to suggest that, in the best case scenario, a
CNN can perform similarly to or better than analytic analyses.

As this is the test case that most resembles past work, we will
compare all of our upcoming tests to the confidence interval ob-
tained here.

Next we examine how our forecasts vary with different noise
and foreground levels. Figure 9 shows the accuracy of the trained
Resnet on ‘Fiducial Li’ LIMs with varying amounts of contami-
nation. As the noise level of the maps is increased, the quality of
the prediction decreases as expected. However, the Resnet retains
significant predictive power even with random-amplitude noise and
foregrounds added. All of the forecasts still begin to fail drastically
at the highest luminosities where we start to run out of bright emit-
ters.

Now that we know our Resnet can handle contamination, we
want to see how it performs with different signal models. Figure
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Figure 8. Comparison of 95% confidence intervals between our Resnet run
on ‘Fiducial Li’/‘Fiducial Noise’/‘No Foregrounds’ test data and the results
of Ihle et al. (2019). Top: 95% confidence intervals placed directly on top of
a ‘Fidicial Li’ lumionsity function. Bottom: Same 95% confidence intervals
on the relative error of the two forecasts. Red crosses show the luminosities
used to train Resnet.

10 shows the 95% confidence intervals for the Resnet results when
tested on ‘Random Li’ test LIMs, with same noise scenarios as Fig-
ure 9. As we spend less time training on the different model param-
eters, these tests are less constraining than the ones in Figure 9.
In the ‘Random Li’ test set, we expect to periodically encounter
cases such as the right panel of Figure 7, where the Resnet perfoms
poorly. These outliers dramatically reduce the performance of the
Resnet, particularly at high luminosity. This suggests that, while the
CNN we have trained here can handle our best-fit model, it would
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Figure 9. Relative 95% confidence intervals for test data with no noise/foregrounds (orange), fiducial noise with no foregrounds (red), and random
noise/foregrounds (blue). All LIMs used the ‘Fiducial Li’ signal model. Scenario descriptions are in Table 2. The red interval shows the same case from
Figure 8.

be risky to use in situations where the true data might deviate sig-
nificantly from expectations.

4.2 Tests on untrained data

So far the Resnet was tested on LIMs made from models within
the space of the training data. However, any real observation has a
chance of including unexpected effects which are not modeled in
advance. It is generally believed that supervised machine learning,
as used in this work, lends itself best to interpolation rather than ex-
trapolation. Therefore, to see how robust the the trained Resnet is,
we must test it on scenarios not included in the training data. Each
of the tests below use ‘Random Noise’ and ‘Random Foreground’
models.

First, we consider maps with an altogether different model for
the underlying luminosity function, specifically that of Padmanab-
han (2018b). The ‘Padmanabhan’ model uses a double power law
to relate halo masses to LCO, as opposed to the ‘Fiducial Li’ which
uses power-law scalings on top of the Behroozi et al. (2013a,b)
star formation rates. Although both models generally produce sim-
ilar expected luminosity functions, the detailed shapes are some-
what different with the Padmanabhan model expecting more bright
sources. We tested on only fiducial parameters of the ‘Padmanab-
han’ model.

Next we consider an extra noise source, specifically the ‘Ge-
ometric Noise’ model described in Section 2.3. This is added in
addition to the existing ‘Random Noise’ model, and is meant to
represent the extra noise around the edges of a survey due to de-
creased observing time.

Finally, we noted previously that the worst outliers in our
‘Random Li’ sample came from maps with very few bright sources.
To examine this behavior, we consider a hand-curated sample of
‘Random Li’ LIMs that contain fewer than 500 sources above
L = 106L� . The Li et al. (2016) best fit parameters lead to more
than 1000 sources in this luminosity range, so these maps deviate
sinificantly from the fiducial case. This test considers the possibil-

ity that, while the true signal is within the range of the test data,
it by chance specifically comes from a regime where the network
performs badly.

The confidence intervals for our Resnet on these new scenar-
ios can be seen in Figure 11. We see that, in all cases, the new
effects substantially degrade the predictions. Interestingly, the pre-
dictive power is roughly the same for both the ‘Padmanabhan’ and
‘Less Bright Sources’ LIMs. Geometric noise was something en-
tirely new to the Resnet, so the constraints are sensibly much worse
than any other test we consider.

Aside from the ‘Geometric Noise’, all of the cases where our
Resnet performs poorly seem to yield similar constraints. Figure
12 zooms in on the high-luminosity confidence intervals for the
‘Padmanabhan’, ‘Less Bright Sources’, and ‘Random Li’ tests. The
shapes are all extremely similiar. This implies that the network is
failing in a similar fashion when presented with data that is mildly
different from the best-case model.

We can use the width of the 95% confidence interval in differ-
ent bins to compare between the different cases. Table 4 compares
these values to that of the ‘Fiducial Li’/‘Fiducial Noise’ scenario
at L = 104 L� . This allows us to summarize the performance of
our Resnet across different scenarios and luminosities. For com-
parison, we also include the width of the Ihle et al. (2019) PS/VID
confidence intervals.

5 DISCUSSION

From the above results we can now get a sense of how we expect
this type of machine learning analysis to perform under different
conditions. The good results for the ‘Fiducial Li’ model indicate
that, if all of the contributions to the signal and noise can be well
modeled, a CNN can be a useful analysis tool. However, the other
results give reason for caution. It is not easy to be sure a priori
whether a map does or does not contain unmodeled effects, so there
is not obvious way to tell which confidence interval one should as-
sume around a learned luminosity function. Therefore, while we
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Figure 10. Same as Figure 9, but instead of testing on ‘Fiducial Li’ LIMs it is tested on ‘Random Li’ models. The red contour from the previous two figures
is shown here as a comparison. Red crosses show the luminosities that we trained the Resnet on.
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Figure 11. Confidence intervals for test data with effects not included in the training data, including the ‘Padmanabhan’ signal model (green), the hand-chosen
‘Less Bright Sources’ mocks (orange), and the extra ‘Geometric Noise’ contamination (blue). As before, the red contour from previous plots is shown here as
a comparison.

have demonstrated the utility of CNNs for this type of measure-
ment, it remains an open question whether this technique can be
safely used on real data.

There are a number of ways our Resnet could be improved
for a full analysis. In this work, we made the simple choice to
model the luminosity function as a series of 49 uncorrelated num-
bers. However, true luminosity functions tend to vary smoothly,
with few sharp features. Future work could make use of, e.g., a
spline model which would retain the non-parametric nature of our
forecasts while taking advantage of the smooth nature of the lumi-
nosity function. There also exists a significant amount of space for
improving on our network architecture. The initial downsampling

we apply to our maps for memory reasons means that the initial
7x7x7 convolution in our network is actually over is actually over
(1 × 1 × 10) × (7 × 7 × 7) = 3, 430 voxels of the original LIM. This
means that instrument, foreground, and confusion noise can more
easily wash out the signal from the underlying emitters.

We used only a modest amount of computing power for this
work, and a future analysis with more resources could relax this
downsampling requirement and access more information. More re-
sources would also enable more training of the network. We made
the somewhat arbitrary decision to stop training after 200 epochs.
However, the loss was still decreasing at this point, suggesting that
our constraints would further improve with more training time. In
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Table 4. Accuracy of the Resnet on different scenarios relative to the accuracy of the ‘Fiducial Li’/‘Fiducial Noise’/‘No Foregrounds’ case. Accuracy is
measured as the difference between the maximum and minimum values of the 95% confidence interval at the given luminosities. All quoted values are relative
to the accuracy of the fudicial scenario at L = 104 L� .

Scenario 104 L� 105 L� 106 L�

‘Fiducial Li’ signal
No Noise/Foregrounds 0.83 0.96 1.6

‘Fiducial Noise’ 1.0 1.3 2.2
‘Random Noise/Foregrounds’ 1.0 1.3 2.4

‘Random Li’ signals
No Noise/Foregrounds 1.5 1.7 7.0

‘Fiducial Noise’ 2.0 3.2 7.9
‘Random Noise/Foregrounds’ 1.8 3.1 9.4

Untrained effects
‘Padmanahban’ signal 1.9 3.5 7.6
‘Less Bright Sources’ 1.7 3.4 11

‘Geometric Noise’ 3.6 8.7 35

Other Ihle et al. 2.0 1.2 0.97
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Figure 12. Zoomed in comparison of 95% confidence intervals for scenar-
ios that fail in a similar fashion. The ‘Padmanabhan’ (green), ‘Less Bright
Sources’ (orange), and ‘Random Li’ cases all yield similar confidence in-
tervals. As before, the red contour from previous plots is shown here as a
comparison.

addition, we did not make a full study of the effects of different ar-
chitectures. This work motivates future study of what types of net-
works are best for studying three-dimensional intensity mapping
data.

We noted above that, when handed data that differ slightly but
not dramatically from the ideal case, the network seems to fail in a
similar manner every time. Specifically, we obtain the same confi-
dence intervals for the three cases shown in Figure 12. This implies
that there is some specific failure happening in our network in a
variety of similar situations. Though it is difficult to tease out the
internal logic of a given network, this implies that one may be able
to alter our architecture to solve this particular problem.

Interestingly, we see that the Resent nearly always performs
better at the lowest luminosities. This may be due to the underlying
range of possible LIMs that we trained it on. In Figure 1 we see that
the 95% confidence band starts growing in size above a luminosity

of 105L� as well. We leave for future work a study of the effects of
these “prior" choices on the final results.

We see above that, when allowing for the non-parametric na-
ture of our model and the loss of line-of-sight information, our net-
work performs comparably to the PS/VID analytic forecasts. This
is another area worthy of additional consideration. Statistics like
the power spectrum and VID of a map require human recognition
of patterns in data and connection to the underlying physics. In
complicated, highly correlated data sets like we see in LIMs it may
be possible for a CNN to recognize additional patterns beyond what
we can represent in analytic statistics. Combined with the fact that
our Resnet does best with models near the center of the training
range, this perhaps motivates a combined approach. One can imag-
ine using the confidence intervals from a PS/VID analysis to set
the range of training data for a network like ours, then seeing if the
trained network can improve on those constraints. This would have
the benefit of allowing the CNN to tease out extra patterns while
avoiding some (but not all) of the pitfalls we describe here.

We also need not restrict the methods described here to lu-
minosity function measurements. LIMs contain information about
a wide variety of physics on scales ranging from star forming re-
gions to the large-scale structure. One could easily imagine training
a network like ours to measure cosmological parameters instead of
luminosity functions. There has also been extensive study in the
literature on what can be learned from cross-correlations between
intensity maps and other tracers (e.g. Lidz et al. 2011; Breysse &
Rahman 2017; Wolz et al. 2017; Fonseca et al. 2018; Breysse &
Alexandroff 2019; Chung et al. 2019), which could be studied us-
ing our methods by feeding both data sets at once into a CNN.

Another use-case of the results shown here could be for fore-
ground removal. Though the foreground contamination added to
our maps is relatively minor, the network was able to handle it with
little loss of accuracy. Even for maps with more severe contamina-
tion, one could apply conventional foreground cleaning to both the
real and simulated data and use the network to help account for any
residual emission. This could be particularly useful for cases where
the foreground cleaning removes part of the signal in the process
(Anderson et al. 2018). We considered only continuum foreground
here, but our same approach may also be useful for separating out
interloper emission lines at different redshifts, an effect which is
not important for the CO(1-0) maps we consider here but will be
very important for maps of several other lines (e.g. Sun et al. 2018;
Gong et al. 2017)
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6 CONCLUSION

In this work we have presented the first application of a CNN to de-
termine the underlying luminosity function of line intensity maps.
We considered the example case of CO intensity maps observed by
the currently-active COMAP survey. Under ideal conditions, our
Resnet was found to have comparable to better accuracy in predict-
ing the luminosity function as conventional techniques. This work
suggests that, used properly, machine learning could be a valuable
tool in extracting astrophysical and cosmological information from
intensity mapping data.

However, we also went on to explore some of the weaknesses
of these techniques. We have shown that the accuracy degrades sig-
nificantly under various conditions that the network was either not
trained or insufficiently trained on. This crucial step has relevance
not just to intensity mapping, but to all attempts to use machine
learning for cosmological data analysis, and is often missing from
past work in the literature. Though the great potential of neural net-
works is obvious, this work makes it clear that extreme care must be
taken when applying them in this context, as small missing effects
can drastically bias the output of neural networks.

Machine learning-based data analysis in cosmology is a field
in its infancy. The proof-of-concept work we present here illustrates
both the opportunities and challenges present in the application of
these methods. With proper care, CNNs like our Resnet may play a
valuable role in understanding the next generation of experimental
data.
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